Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Water Res ; 255: 121482, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598887

ABSTRACT

Numerous qPCR-based methods are available to estimate the concentration of fecal pollution sources in surface waters. However, qPCR fecal source identification data sets often include a high proportion of non-detections (reactions failing to attain a prespecified minimal signal intensity for detection) and measurements below the assay lower limit of quantification (minimal signal intensity required to estimate target concentration), making it challenging to interpret results in a quantitative manner while accounting for error. In response, a Bayesian statistic based Fecal Score (FS) approach was developed that estimates the weighted average concentration of a fecal source identification genetic marker across a defined group of samples, mathematically incorporating qPCR measurements from all samples. Yet, implementation is technically demanding and computationally intensive requiring specialized training, the use of expert software, and access to high performance computing. To address these limitations, this study reports a novel approximation model for FS determination based on a frequentist approach. The performance of the Bayesian and Frequentist models are compared using fecal source identification qPCR data representative of different 'censored' data scenarios from a recently published study focusing on the impact of stormwater discharge in urban streams. In addition, data set eligibility recommendations for the responsible use of these models are presented. Findings indicate that the Frequentist model can generate similar average concentrations and uncertainty estimates for FS, compared to the original Bayesian approach. The Frequentist model should make calculations less computationally and technically intensive, allowing for the development of easier to use data analysis tools for fecal source identification applications.

2.
PLoS One ; 18(1): e0278548, 2023.
Article in English | MEDLINE | ID: mdl-36701383

ABSTRACT

Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls. Receiving water samples were collected twice per month (n = 24) and after rain events (n = 9) from seven headwaters of the Anacostia River in the District of Columbia (United States) exhibiting a gradient of impervious surface, residential, and park surface areas. Almost 50% of stream samples (n = 103) were impaired, exceeding the local E. coli single sample maximum assessment level (410 MPN/100 ml). Fecal scores (average log10 copies per 100 ml) were determined to prioritize sites by pollution source and to evaluate potential links with land use, rainfall, and E. coli levels using a recently developed censored data analysis approach. Dog, ruminant, and avian fecal scores were almost always significantly increased after rain or when E. coli levels exceeded the local benchmark. Human fecal pollution trends showed the greatest variability with detections ranging from 9.1% to 96.7% across sites. Avian fecal scores exhibited the closest connection to land use, significantly increasing in catchments with larger residential areas after rain events (p = 0.038; R2 = 0.62). Overall, results demonstrate that combining genetic fecal source identification methods with GIS mapping complements routine E. coli monitoring to improve management of urban streams impacted by stormwater outfalls.


Subject(s)
Rivers , Water Pollution , Animals , Dogs , Humans , Environmental Monitoring/methods , Escherichia coli/genetics , Feces , Water Microbiology , Water Pollution/analysis
3.
Water Res ; 225: 119162, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191524

ABSTRACT

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.


Subject(s)
Benchmarking , Water Quality , Bayes Theorem , Real-Time Polymerase Chain Reaction , DNA
5.
Water Res ; 212: 118114, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35091220

ABSTRACT

Fecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material. Here, we report a single laboratory qPCR performance assessment of the National Institute of Standards and Technology Standard Reference Material 2917 (NIST SRM® 2917), a linearized plasmid DNA construct that functions with 13 recreational water quality qPCR assays. Performance experiments indicate the generation of standard curves with amplification efficiencies ranging from 0.95 ± 0.006 to 0.99 ± 0.008 and coefficient of determination values (R2) ≥ 0.980. Regardless of qPCR assay, variability in repeated measurements at each dilution level were very low (quantification threshold standard deviations ≤ 0.657) and exhibited a heteroscedastic trend characteristic of qPCR standard curves. The influence of a yeast carrier tRNA added to the standard control material buffer was also investigated. Findings demonstrated that NIST SRM® 2917 functions with all qPCR methods and suggests that the future use of this control material by scientists and water quality managers should help reduce variability in concentration estimates and make results more consistent between laboratories.


Subject(s)
Water Microbiology , Water Quality , Environmental Monitoring , Feces , Real-Time Polymerase Chain Reaction , Water Pollution/analysis
6.
Front Water ; 3: 626849, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34263162

ABSTRACT

Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.

7.
J Microbiol Methods ; 184: 106186, 2021 05.
Article in English | MEDLINE | ID: mdl-33766609

ABSTRACT

Fecal pollution remains a challenge for water quality managers at Great Lakes and inland recreational beaches. The fecal indicator of choice at these beaches is typically Escherichia coli (E. coli), determined by culture-based methods that require over 18 h to obtain results. Researchers at the United States Environmental Protection Agency (EPA) have developed a rapid E. coli qPCR methodology (EPA Draft Method C) that can provide same-day results for improving public health protection with demonstrated sensitivity, specificity, and data acceptance criteria. However, limited information is currently available to compare the occurrence of E. coli determined by cultivation and by EPA Draft Method C (Method C). This study provides a large-scale data collection effort to compare the occurrence of E. coli determined by these alternative methods at more than 100 Michigan recreational beach and other sites using the complete set of quantitative data pairings and selected subsets of the data and sites meeting various eligibility requirements. Simple linear regression analyses of composite (pooled) data indicated a correlation between results of the E. coli monitoring approaches for each of the multi-site datasets as evidenced by Pearson R-squared values ranging from 0.452 to 0.641. Theoretical Method C threshold values, expressed as mean log10 target gene copies per reaction, that corresponded to an established E. coli culture method water quality standard of 300 MPN or CFU /100 mL varied only from 1.817 to 1.908 for the different datasets using this model. Different modeling and derivation approaches that incorporated within and between-site variability in the estimates also gave Method C threshold values in this range but only when relatively well-correlated datasets were used to minimize the error. A hypothetical exercise to evaluate the frequency of water impairments based on theoretical qPCR thresholds corresponding to the E. coli water quality standard for culture methods suggested that the methods may provide the same beach notification outcomes over 90% of the time with Method C results differing from culture method results that indicated acceptable and unacceptable water quality at overall rates of 1.9% and 6.6%, respectively. Results from this study provide useful information about the relationships between E. coli determined by culture and qPCR methods across many diverse freshwater sites and should facilitate efforts to implement qPCR-based E. coli detection for rapid recreational water quality monitoring on a large scale in the State of Michigan.


Subject(s)
Colony Count, Microbial/methods , Environmental Monitoring/methods , Escherichia coli/isolation & purification , Lakes/microbiology , Real-Time Polymerase Chain Reaction/methods , Escherichia coli/genetics , Escherichia coli/growth & development , Michigan , United States , United States Environmental Protection Agency , Water Quality
8.
Water Res ; 192: 116845, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33508720

ABSTRACT

Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.


Subject(s)
Water Microbiology , Water Pollution , Animals , Dogs , Environmental Monitoring , Escherichia coli , Feces , Humans , Water Pollution/analysis
9.
Water Res ; 182: 116014, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32622131

ABSTRACT

Though Lake Michigan beaches in Chicago are not impacted by stormwater or wastewater outfalls, several of those beaches often exceed USEPA Beach Action Values (BAVs). We investigated the role of microbial source tracking (MST) as a complement to routine beach monitoring at Chicago beaches. In summer 2016, water samples from nine Chicago beaches were analyzed for E. coli by culture and enterococci by qPCR. A total of 195 archived samples were then tested for human (HF183/BacR287, HumM2), canine (DG3, DG37), and avian (GFD) microbial source tracking (MST) markers. Associations between MST and general fecal indicator bacteria (FIB) measures were evaluated and stratified based on wet and dry weather definitions. Among the 195 samples, HF183/BacR287 was quantifiable in 4%, HumM2 in 1%, DG3 in 6%, DG37 in 2%, and GFD in 23%. The one beach with a dog area was far more likely to have DG3 present in the quantifiable range than other beaches. Exceedance of general FIB BAVs increased the odds of human, dog and avian marker detection. MST marker weighted-average fecal scores for DG3 was 2.4 times, DG37 was 2.1 times, and GFD was 1.6 times higher during wet compared to dry weather conditions. HF183/BacR287 weighted-average fecal scores were not associated with precipitation. Associations between FIB BAV exceedance and MST marker detection were generally stronger in wet weather. Incorporating MST testing into routine beach water monitoring can provide information that beach managers can use when developing protection plans for beaches not impacted by point sources.


Subject(s)
Water Microbiology , Water Pollution , Animals , Bathing Beaches , Chicago , Dogs , Environmental Monitoring , Escherichia coli , Feces , Humans , Michigan , Weather
10.
Water (Basel) ; 12(3): 1-775, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32461809

ABSTRACT

Draft method C is a standardized method for quantifying E. coli densities in recreational waters using quantitative polymerase chain reaction (qPCR). The method includes a Microsoft Excel workbook that automatically screens for poor-quality data using a set of previously proposed acceptance criteria, generates weighted linear regression (WLR) composite standard curves, and calculates E. coli target gene copies in test samples. We compared standard curve parameter values and test sample results calculated with the WLR model to those from a Bayesian master standard curve (MSC) model using data from a previous multi-lab study. The two models' mean intercept and slope estimates from twenty labs' standard curves were within each other's 95% credible or confidence intervals for all labs. E. coli gene copy estimates of six water samples analyzed by eight labs were highly overlapping among labs when quantified with the WLR and MSC models. Finally, we compared multiple labs' 2016-2018 composite curves, comprised of data from individual curves where acceptance criteria were not used, to their corresponding composite curves with passing acceptance criteria. Composite curves developed from passing individual curves had intercept and slope 95% confidence intervals that were often narrower than without screening and an analysis of covariance test was passed more often. The Excel workbook WLR calculation and acceptance criteria will help laboratories implement draft method C for recreational water analysis in an efficient, cost-effective, and reliable manner.

11.
Appl Environ Microbiol ; 86(8)2020 04 01.
Article in English | MEDLINE | ID: mdl-32060019

ABSTRACT

Cultivated fecal indicator bacteria such as Escherichia coli and enterococci are typically used to assess the sanitary quality of recreational waters. However, these indicators suffer from several limitations, such as the length of time needed to obtain results and the fact that they are commensal inhabitants of the gastrointestinal tract of many animals and have fate and transport characteristics dissimilar to pathogenic viruses. Numerous emerging technologies that offer same-day water quality results or pollution source information or that more closely mimic persistence patterns of disease-causing pathogens that may improve water quality management are now available, but data detailing geospatial trends in wastewater across the United States are sparse. We report geospatial trends of cultivated bacteriophage (somatic, F+, and total coliphages and GB-124 phage), as well as genetic markers targeting polyomavirus, enterococci, E. coli, Bacteroidetes, and human-associated Bacteroides spp. (HF183/BacR287 and HumM2) in 49 primary influent sewage samples collected from facilities across the contiguous United States. Samples were selected from rural and urban facilities spanning broad latitude, longitude, elevation, and air temperature gradients by using a geographic information system stratified random site selection procedure. Most indicators in sewage demonstrated a remarkable similarity in concentration regardless of location. However, some exhibited predictable shifts in concentration based on either facility elevation or local air temperature. Geospatial patterns identified in this study, or the absence of such patterns, may have several impacts on the direction of future water quality management research, as well as the selection of alternative metrics to estimate sewage pollution on a national scale.IMPORTANCE This study provides multiple insights to consider for the application of bacterial and viral indicators in sewage to surface water quality monitoring across the contiguous United States, ranging from method selection considerations to future research directions. Systematic testing of a large collection of sewage samples confirmed that crAssphage genetic markers occur at a higher average concentration than key human-associated Bacteroides spp. on a national scale. Geospatial testing also suggested that some methods may be more suitable than others for widespread implementation. Nationwide characterization of indicator geospatial trends in untreated sewage represents an important step toward the validation of these newer methods for future water quality monitoring applications. In addition, the large paired-measurement data set reported here affords the opportunity to conduct a range of secondary analyses, such as the generation of new or updated quantitative microbial risk assessment models used to estimate public health risk.


Subject(s)
Bacterial Load , Feces/microbiology , Viral Load , Wastewater/microbiology , Water Quality , Environmental Monitoring , Geography , Sewage/microbiology , Spatial Analysis , United States , Waste Disposal, Fluid , Wastewater/virology
12.
PLoS One ; 14(6): e0216827, 2019.
Article in English | MEDLINE | ID: mdl-31170166

ABSTRACT

Fecal pollution management remains one of the biggest challenges for water quality authorities worldwide. Advanced fecal pollution source identification technologies are now available that can provide quantitative information from many animal groups. As public interest in these methodologies grows, it is vital to use standardized procedures with clearly defined data acceptance metrics and conduct field studies demonstrating the use of these techniques to help resolve real-world water quality challenges. Here we apply recently standardized human-associated qPCR methods with custom data acceptance metrics (HF183/BacR287 and HumM2), along with established procedures for ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution sources to (i) demonstrate the feasibility of implementing standardized qPCR procedures in a large-scale field study, and (ii) characterize trends in fecal pollution sources in the research area. A total of 602 water samples were collected over a one-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries in the Tillamook Bay Watershed (OR, USA). Host-associated qPCR results were combined with high-resolution geographic information system (GIS) land use and general indicator bacteria (E. coli) measurements to elucidate water quality fecal pollution trends. Results demonstrate the feasibility of implementing standardized fecal source identification qPCR methods with established data acceptance metrics in a large-scale field study leading to new investigative leads suggesting that elevated E. coli levels may be linked to specific pollution sources and land use activities in the Tillamook Bay Watershed.


Subject(s)
Bays/chemistry , Bays/microbiology , Feces/chemistry , Feces/microbiology , Real-Time Polymerase Chain Reaction/standards , Water Pollution/analysis , Escherichia coli/genetics , Escherichia coli/isolation & purification , Reference Standards
13.
Water Res ; 156: 465-474, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30953844

ABSTRACT

There is interest in the application of rapid quantitative polymerase chain reaction (qPCR) methods for recreational freshwater quality monitoring of the fecal indicator bacteria Escherichia coli (E. coli). In this study we determined the performance of 21 laboratories in meeting proposed, standardized data quality acceptance (QA) criteria and the variability of target gene copy estimates from these laboratories in analyses of 18 shared surface water samples by a draft qPCR method developed by the U.S. Environmental Protection Agency (EPA) for E. coli. The participating laboratories ranged from academic and government laboratories with more extensive qPCR experience to "new" water quality and public health laboratories with relatively little previous experience in most cases. Failures to meet QA criteria for the method were observed in 24% of the total 376 test sample analyses. Of these failures, 39% came from two of the "new" laboratories. Likely factors contributing to QA failures included deviations in recommended procedures for the storage and preparation of reference and control materials. A master standard curve calibration model was also found to give lower overall variability in log10 target gene copy estimates than the delta-delta Ct (ΔΔCt) calibration model used in previous EPA qPCR methods. However, differences between the mean estimates from the two models were not significant and variability between laboratories was the greatest contributor to overall method variability in either case. Study findings demonstrate the technical feasibility of multiple laboratories implementing this or other qPCR water quality monitoring methods with similar data quality acceptance criteria but suggest that additional practice and/or assistance may be valuable, even for some more generally experienced qPCR laboratories. Special attention should be placed on providing and following explicit guidance on the preparation, storage and handling of reference and control materials.


Subject(s)
Escherichia coli , Water Microbiology , Enterococcus , Fresh Water , Water Quality
14.
Water Res ; 156: 456-464, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30952079

ABSTRACT

There is growing interest in the application of rapid quantitative polymerase chain reaction (qPCR) and other PCR-based methods for recreational water quality monitoring and management programs. This interest has strengthened given the publication of U.S. Environmental Protection Agency (EPA)-validated qPCR methods for enterococci fecal indicator bacteria (FIB) and has extended to similar methods for Escherichia coli (E. coli) FIB. Implementation of qPCR-based methods in monitoring programs can be facilitated by confidence in the quality of the data produced by these methods. Data quality can be determined through the establishment of a series of specifications that should reflect good laboratory practice. Ideally, these specifications will also account for the typical variability of data coming from multiple users of the method. This study developed proposed standardized data quality acceptance criteria that were established for important calibration model parameters and/or controls from a new qPCR method for E. coli (EPA Draft Method C) based upon data that was generated by 21 laboratories. Each laboratory followed a standardized protocol utilizing the same prescribed reagents and reference and control materials. After removal of outliers, statistical modeling based on a hierarchical Bayesian method was used to establish metrics for assay standard curve slope, intercept and lower limit of quantification that included between-laboratory, replicate testing within laboratory, and random error variability. A nested analysis of variance (ANOVA) was used to establish metrics for calibrator/positive control, negative control, and replicate sample analysis data. These data acceptance criteria should help those who may evaluate the technical quality of future findings from the method, as well as those who might use the method in the future. Furthermore, these benchmarks and the approaches described for determining them may be helpful to method users seeking to establish comparable laboratory-specific criteria if changes in the reference and/or control materials must be made.


Subject(s)
Escherichia coli , Water Quality , Bathing Beaches , Bayes Theorem , Data Accuracy , Environmental Monitoring , Feces , Water , Water Microbiology
15.
Sci Total Environ ; 650(Pt 1): 1292-1302, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308816

ABSTRACT

Fecal contamination of recreational waters with cattle manure can pose a risk to public health due to the potential presence of various zoonotic pathogens. Fecal indicator bacteria (FIB) have a long history of use in the assessment of recreational water quality, but FIB quantification provides no information about pollution sources. Microbial source tracking (MST) markers have been developed in response to a need to identify pollution sources, yet factors that influence their decay in ambient waters are often poorly understood. We investigated the influence of water type (freshwater versus marine) and select environmental parameters (indigenous microbiota, ambient sunlight) on the decay of FIB and MST markers originating from cattle manure. Experiments were conducted in situ using a submersible aquatic mesocosm containing dialysis bags filled with a mixture of cattle manure and ambient water. Culturable FIB (E. coli, enterococci) were enumerated by membrane filtration and general fecal indicator bacteria (GenBac3, Entero1a, EC23S857) and MST markers (Rum2Bac, CowM2, CowM3) were estimated by qPCR. Water type was the most significant factor influencing decay (three-way ANOVA, p: 0.006 to <0.001), although the magnitude of the effect differed among microbial targets and over time. The presence of indigenous microbiota and exposure to sunlight were significantly correlated (three-way ANOVA, p: 0.044 to <0.001) with decay of enterococci and CowM2, while E. coli, EC23S857, Rum2Bac, and CowM3 (three-way ANOVA, p: 0.044 < 0.001) were significantly impacted by sunlight or indigenous microbiota. Results indicate extended persistence of both cultivated FIB and genetic markers in marine and freshwater water types. Findings suggest that multiple environmental stressors are important determinants of FIB and MST marker persistence, but their magnitude can vary across indicators. Selective exclusion of natural aquatic microbiota and/or sunlight typically resulted in extended survival, but the effect was minor and limited to select microbial targets.


Subject(s)
Environmental Monitoring/methods , Fresh Water/microbiology , Seawater/microbiology , Water Microbiology , Water Pollutants/analysis , Animals , Cattle , Enterococcus/genetics , Escherichia coli/genetics , Feces/microbiology
16.
J Microbiol Methods ; 152: 135-142, 2018 09.
Article in English | MEDLINE | ID: mdl-30017849

ABSTRACT

An obstacle to establishing widely useful data acceptance criteria for U.S. Environmental Protection Agency (EPA) qPCR methods has been the unavailability of standardized reference materials. Earlier versions of EPA Methods 1609 and 1611 for enterococci used cellular reference materials for quantifying enterococci in unknown test samples, however, EPA updates to these fundamentally DNA-based analysis methods have shifted toward the use of DNA standards. This report describes the application of droplet digital PCR (ddPCR) analysis for the quantification of a set of synthetic plasmid DNA standards that have been made available for updated EPA Methods 1609.1 and 1611.1 as well as for EPA Draft Method C for Escherichia coli. To obtain the most accurate concentration estimates possible, part of this effort was to develop a data analysis model for determining the fluorescence thresholds that distinguish positive from negative droplets produced by the ddPCR reactions. Versions of this model are described for applications with individual reactions, multiple reactions within a ddPCR system run, and multiple reactions within and across different system runs. The latter version was applied toward determinations of error in the concentration estimates of the standards from replicate analyses of each standard in multiple ddPCR system runs. Mean concentration estimates for the five standards from the ddPCR analyses were 4.356, 3.381, 2.371, 1.641 and 1.071 log10 copies/5 µL with associated standard deviations of 0.074, 0.082, 0.108, 0.131 and 0.188, respectively. These estimates contrasted with expected log10 concentrations of 4.6, 3.6, 2.6, 1.9 and 1.3 copies/5 µL, respectively, based on the yield of the plasmid reported by the vendor and spectrophotometric analysis of the initial stock solution of this material. These results illustrate how the analyses of original stocks may lead to potential bias(es) in the concentration estimates of final DNA standards and subsequently in the estimates of unknown test samples determined from these standards in qPCR analyses.


Subject(s)
Bacteria/genetics , DNA, Bacterial/analysis , Environmental Monitoring/methods , Feces/microbiology , Plasmids/analysis , Real-Time Polymerase Chain Reaction/methods , United States Environmental Protection Agency/standards , Bacteria/isolation & purification , Base Sequence , Enterococcus , Fluorescence , Models, Theoretical , Plasmids/genetics , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Software , United States
17.
Water Res ; 140: 200-210, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29715644

ABSTRACT

There is a growing interest for the use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect Escherichia coli and are considered as potential surrogates to infer the likely presence of enteric viral pathogens. We report the use of a dead-end hollow fiber ultrafiltration single agar layer method to enumerate F+ and somatic coliphage from surface waters collected from three Great Lake areas. At each location, three sites (two beaches; one river) were sampled five days a week over the 2015 beach season (n = 609 total samples). In addition, culturable E. coli and enterococci concentrations, as well as 16 water quality and recreational area parameters were assessed such as rainfall, turbidity, dissolved oxygen, pH, and ultra violet absorbance. Overall, somatic coliphage levels ranged from non-detectable to 4.39 log10 plaque forming units per liter and were consistently higher compared to F+ (non-detectable to 3.15 log10 PFU/L), regardless of sampling site. Coliphage concentrations weakly correlated with cultivated fecal indicator bacteria levels (E. coli and enterococci) at 75% of beach sites tested in study (r = 0.28 to 0.40). In addition, ultraviolet light absorption and water temperature were closely associated with coliphage concentrations, but not fecal indicator bacteria levels suggesting different persistence trends in Great Lake waters between indicator types (bacteria versus virus). Finally, implications for coliphage water quality management and future research directions are discussed.


Subject(s)
Coliphages , Lakes/virology , Rivers/virology , Water Microbiology , Enterococcus , Environmental Biomarkers , Environmental Monitoring/methods , Escherichia coli/virology , Feces/microbiology , Hydrogen-Ion Concentration , Incidence , Lakes/analysis , Lakes/microbiology , Oxygen/analysis , Recreation , Ultrafiltration/methods , Water Quality/standards
18.
ACS Omega ; 3(8): 10107-10113, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459140

ABSTRACT

Periphyton is a complex mixture of algae, microbes, inorganic sediment, and organic matter that is attached to submerged surfaces in most flowing freshwater systems. This natural community is known to absorb pollutants from the water column, resulting in improved water quality. However, the role of periphyton in the fate and transport of genetic fecal markers suspended in the water column remains unclear. As application of genetic-based methodologies continues to increase in freshwater settings, it is important to identify any interactions that could potentially confound water quality interpretations. A 16 week indoor mesocosm study was conducted to simultaneously measure genetic fecal markers in the water column and in the associated periphyton when subject to wastewater source loading. Treated wastewater effluent was pumped directly from a treatment facility adjacent to the experimental stream facility. Inflow and outflow surface water grabs were paired with the collection of periphyton samples taken from the mesocosm substrates on a weekly basis. Samples were analyzed with three genetic fecal indicator quantitative real-time polymerase chain reaction assays targeting Escherichia coli (EC23S857), enterococci (Entero1), and Bacteroidales (GenBac3), as well as, two human host-associated fecal pollution markers (HF183 and HumM2). In addition, periphyton dry mass was measured. During wastewater effluent loading, genetic markers were detected in periphyton at frequencies up to 100% (EC23S857, Entero1, and GenBac3), 59.4% (HF183), and 21.9% (HumM2) confirming sequestration from the water column. Mean net-flux shifts in water column inflow and outflow genetic indicator concentrations further supported interactions between the periphyton and water column. In addition, positive correlations were observed between periphyton dry mass and genetic marker concentrations ranging from r = 0.693 (Entero1) to r = 0.911 (GenBac3). Overall, findings support the notion that genetic markers suspended in the water column can be trapped by periphyton, further suggesting that the benthic environment in flowing freshwater systems may be an important factor to consider for water quality management with molecular methods.

19.
Water Res ; 128: 148-156, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29101858

ABSTRACT

Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and management. However, there are currently no standardized approaches for field implementation and interpretation of qPCR data. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and a novel Bayesian weighted average approach to establish a human fecal contamination score (HFS) that can be used to prioritize sampling sites for remediation based on measured human waste levels. The HFS was then used to investigate 975 study design scenarios utilizing different combinations of sites with varying sampling intensities (daily to once per week) and number of qPCR replicates per sample (2-14 replicates). Findings demonstrate that site prioritization with HFS is feasible and that both sampling intensity and number of qPCR replicates influence reliability of HFS estimates. The novel data analysis strategy presented here provides a prescribed approach for the implementation and interpretation of human-associated HF183/BacR287 qPCR data with the goal of site prioritization based on human fecal pollution levels. In addition, information is provided for future users to customize study designs for optimal HFS performance.


Subject(s)
Feces , Real-Time Polymerase Chain Reaction/methods , Water Microbiology/standards , Bayes Theorem , California , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Quality Control , Real-Time Polymerase Chain Reaction/standards , Recreation , Reproducibility of Results , Water Quality
20.
Environ Sci Technol ; 51(16): 9146-9154, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28700235

ABSTRACT

Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal-indicator bacteria are used; however, they cannot distinguish human fecal waste from other animal pollution sources. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based on initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against an animal fecal reference library, and crAssphage genetic markers were highly abundant in raw sewage and sewage-impacted water samples. In addition, CPQ_056 and CPQ_064 performance was compared to HF183/BacR287 and HumM2 assays in paired experiments. Findings confirm that viral crAssphage qPCR assays perform at a similar level to well-established bacterial human-associated fecal-source-identification approaches. These new viral-based assays could become important water quality management and research tools.


Subject(s)
Feces , Real-Time Polymerase Chain Reaction , Sewage , Water Pollution , Animals , Bacteria , Humans , Polymerase Chain Reaction , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...